Conversion of CH₂O in a wet He plasma propagating through a microcapillary at atmospheric pressure

G.Bauville¹, A. Gady^{1,2}, C. Rudolf-D'Alexis², M. Heninger², P. Jeanney¹, J. Lemaire², J. Santos Sousa¹, A. Pallandre², S. Pasquiers¹

¹ Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, UMR8578, Orsay, France ² Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, Orsay, France

Abstract: In this study, we investigate the conversion of Formaldehyde (CH_2O) in a non-equilibrium wet Helium plasma in a micro capillary tube created using a DC-pulsed micro dielectric barrier discharge (μDBD). We follow the concentration of CH_2O throughout cold plasma experiments with real-time mass spectrometry Fourier Transform Ion Cyclotron Resonance with Chemical Ionization (CI-FTICR).

1. Introduction

Volatile Organic Compounds (VOCs) have an important impact on the atmosphere and therefore on our everyday-life environment [1], making the conversion of VOCs a significant research subject. Non-equilibrium plasmas allow efficient VOCs removal and are often used to treat polluted gases like Formaldehyde (CH₂O) [2]. Among VOCs, this molecule is a significant concern due to its prevalence in indoor and outdoor air and its toxicity that can cause serious health issues such as cancer [3]. This study aims to determine the impact of a micro-capillary wet He cold plasma in the conversion of CH₂O depending on the deposited energy in the discharge.

2. Methods

Using a DC-pulsed micro–Dielectric Barrier Discharge (μ DBD), we ignite a non-equilibrium plasma inside a micro-capillary tube with an inner diameter of 800 μm in Helium at 1 ln/min flow with 1% of H₂O and CH₂O at an inlet concentration of 180 ppm. A stainless-steel needle is inserted inside the tube, playing the role of the high voltage electrode, while a copper tape is wrapped around the tube, used as the counter electrode. The plasma is ignited with different voltage applied to the μ DBD, varying from 2 kV to 5 kV at a frequency of 10 kHz and pulse duration 3 μ s.

In order to follow the conversion of CH₂O and potential by-product generated during the experiment, a real-time high sensitivity mass spectrometer CI-FTICR is set up at the exit of the tube. This method allows to detect VOCs down to concentration around tens of ppb [4].

3. Results and Discussion

Figure 1 shows the concentration of CH_2O exiting from the tube while varying the voltage applied to the μDBD during the experiment, highlighting the impact of the plasma in the conversion of CH_2O . As the energy deposited in the plasma increases with the applied voltage, more efficient reactions occur thus increasing the conversion rate. We observe a conversion rate of 14% at 2 kV, 37% at 3 kV, 57% at 4 kV, and 73% at 5 kV. This suggests that CH_2O is not only removed but also transformed into other products, potentially including H_2 , CO, or even HCOOH. Further analysis would be needed to confirm the exact nature of these by-products.

Fig. 1. Evolution of CH_2O concentration while varying the voltage applied to the μDBD , for 2, 3, 4, and 5 kV.

Figure 1 also shows a continuous decrease in the concentration of CH₂O likely due to external factors and not consequences of the discharge.

4. Conclusion

The applied voltage in the μDBD plays a major role in CH_2O conversion, with higher voltages leading to increased energy deposition in the plasma and consequently a higher conversion rate. Our results show that CH_2O conversion reaches up to 73% at 5 kV, highlighting the efficiency of the micro-capillary wet He plasma in VOCs removal. Further studies will optimize the process and elucidate reaction pathways to enhance conversion rates and identify by-products.

Acknowledgement

This project has received financial support from the CNRS through the MITI interdisciplinary programs through its exploratory research program (MoPlasMic project).

References

- [1] J. Williams et al., Volatile Organic Compounds in the Atmosphere, John Wiley & Sons, Chap. 1 (2007)
- [2] N. Blin-Simiand et al., J. Phys. D. 49, 195202 (2016)
- [3] A.H. Khoshakhlagh *et al.*, *Environ. Geochem. Health* **46**, 206 (2024)
- [4] M. Heninger et al., Anal. Chem. 90, 7517 (2018)